OBSAH

Charakteristika a význam sumárnej štatistiky

Vzorové údaje 1.1

Praktické použitie programu SAS (SAS Enterprise Guide)

Príklad 1.1 (SAS) Príklad 1.2 (SAS)

Praktické použitie programu EXCEL (Microsoft 365)

Príklad 1.1 (Excel) Príklad 1.2 (Excel)

Praktické použitie programu R (R Studio)

Príklad 1.1 (Program R) Príklad 1.2 (Program R)

Ďalšie príklady použitia sumárnej štatistiky

Zdroje a zoznam použitej literatúry

Charakteristika a význam sumárnej štatistiky

Sumárna štatistika tvorí jeden zo základných štatistických nástrojov v rámci popisnej štatistiky pri ktorej sa najčastejšie počítajú základné štatistické charakteristiky kvantitatívnych znakov a vlastností skúmaných javov a procesov.

Sumárna štatistika by mala byť jednou s prvých analýz, ktoré použijeme ak začíname analyzovať nejaké číselné údaje. Sumárna štatistika tvorí neodmysliteľnú súčasť celej uskutočnenej štatistickej analýzy.

Štatistická analýza zahŕňa štyri základné procesy:

- 1. Identifikácia populácie, ktorá nás zaujíma (napr. skupina zvierat konkrétneho druhu a plemena, definovanie a výber analyzovaných znakov a vlastností).
- Výber náhodnej vzorky a výber štatistických metód (malá pravdepodobnoť, že budeme mať k dispozícii údaje z celej populácie).
- Štatistické výpočty na základe konkrétnych dielčich analýz slúžiace na podrobný popis a analýzu náhodnej vzorky (popisná štatistika).
- 4. Využitie a prezentácia získaných výsledkov a informácií z náhodnej vzorky na vyvodenie všeobecných záverov (inferenčná štatistika) využiteľných na úrovni celej populácie.

Obr. 1.1 Štatistická analýza (zdroj: projekt KEGA, Candrák, 2021)

Veľmi dôležitou podmienkov výberu a použitia rôznych štatistických metód v rámci štatistických analýz je splnenie predpokladov, ktoré musia byť splnené aby konkrétna metóda bola správne použitá. Pri interpretácii výsledkov musíme preto presne vedieť, na akých predpokladoch sú jednotlivé metódy založené.

Základné štatistické charakteristiky (popisné charakteristiky) sú číselné charakteristiky, ktoré koncentrovanou formou, jedným číslom, vyjadrujú určitú vlastnosť skúmaného štatistického znaku.

Väčšinou sú použiteľné pre kvantitatívne štatistické znaky a len niektoré môžeme použiť pre kvalitatívne štatistické znaky. Predstavujú nástroj štatistiky ako prvotne pochopiť analyzované údaje.

Sumárna štatistika poskytuj v oblasti živočíšnej produkcie prvotné informácie o údajoch, ktoré môžeme použiť na zodpovedanie mnohých otázok súvisiacich s chovom, výživou, šľachtením a genetickým hodnotením zvierat. Na ich základe môžeme prijímať správne rozhodnutia o hodnotách a parametroch aktuálneho stavu hodnotených ukazovateľov a vlastností zvierat.

Popisné charakteristiky rozdeľujeme na: charakteristiky polohy, charakteristiky variability, charakteristiky šikmosti a špicatosti.

Charakteristiky polohy: stredné hodnoty (priemery a ostatné stredné hodnoty). Medzi priemery patria: aritmetický, geometrický, kvadratický a harmonický priemer. Priemery môžu byť vo forme jednoduchej, váženej, resp poznáme aj priemery kĺzavé. Medzi ostatné stredné hodnoty patria: modus a medián.

Charakteristiky variability: miery variability, ktorých veľkosť ovplyvňujú len niektoré hodnoty znaku v súbore a miery variability, ktorých veľkosť ovplyvňujú každá hodnota znaku v súbore.

Do prvej skupiny patria: variačné rozpätie, kvantilové rozpätie, kvartilové rozpätie, kvartilová odchýlka. Do druhej skupiny patria: absolútne charakteristiky (priemerná odchýlka, rozptyl, smerodajná-štandardná odchýlka) a relatívne charakteristiky (pomerná priemerná odchýlka a variančný koeficient).

Charakteristiky šikmosti a špicatosti: koeficienty, ktoré popisujú šikmosť, alebo špicatosť spravidla normálneho rozdelenia početnosti znaku. Medzi tieto charakteristiky patria: koeficient šikmosti a koeficient špicatosti.

Praktický postup základného popisu a skúmania údajov:

1. Výber vhodnej metódy (metód) popisu údajov (zohľadnenie typu analyzovaných údajov).

2. Prvotné grafické zobrazenia údajov (výber vhodného grafického zobrazenia).

3. Výpočet vybratých štatistických charakteristík (sumárna štatistika).

4. Interpretácia a prezentácia výsledkov sumárnej štatistiky.

5. Základná distribučná analýza (analýza rozdelenia početnosti).

6. Interpretácia a prezentácia základnej distribučnej analýzy (normálne rozdelenie).

1. Výber vhodnej metódy (metód) popisu údajov (zohľadnenie typu analyzovaných údajov).

Rozlišujeme dva základné typy údajov: údaje spojité a údaje diskrétne. Typ údajov určuje jednoznačne spôsob ako údaje popisovať a sumarizovať ich výsledky (iný spôsob je vprípade údajov spojitých a iný v prípade údajov diskrétnych).

Spojité údaje (vek, hmotnosť, produkcia mlieka): premenné majú neobmedzený počet možných hodnôt v rámci daného rozsahu, hodnoty sú číselné. Spojité údaje sa tiež nazývajú aj intervalové údaje.

Diskrétne údaje (pohlavie farba, genotype, bodová klasifikácia, Áno/Nie) májú zvyčajne malý počet odlišných hodnôt v rámci daného rozsahu. Hodnoty môžu byť znakové alebo číselné. Diskrétne údaje sa tiež nazývajú aj kategorické (kategoriálne) údaje.

2. Prvotné grafické zobrazenia údajov (výber vhodného grafického zobrazenia).

Začiatkom každej analýzy údajov je ich kontrola z hľadiska toho, či neobsahujú nejaké chyby, nelogické resp. nepravdivé hodnoty a stavy. Najjednoduchší spôsob, ako skontrolovať, alebo preskúmať svoje údaje z tohto pohľadu, je jednoduché grafické zobrazenie ich hodnôt.

Z hľadiska tohto účelu ako základné grafické zobrazenia sa používajú: histogramy, krabicové grafy a stĺpcové grafy.

Tab 1.1 Grafické zobrazenia (zdroj: projekt KEGA, Candrák, 2021)

Histogram zobrazuje rozdelenie (distribúciu) spojitej premennej. Distribúcia je súbor dátových hodnôt usporiadaných v poradí spolu s relatívnou frekvenciou. Histogram poskytuje všeobecný grafický obraz o hodnotenej premennej. Môžeme vidieť, či sú údaje vycentrované alebo viac rozložené na jednej strane. V tomto príklade máme niektoré hodnoty, ktoré sú mierne vychýlené

a preto bude potrebné vykonať ich detailnejšie posúdenie pomocou samostatnej distribučnej analýzy.

Krabicové grafy poskytujú veľmi užitočné informácie o variabilite údajov a extrémnych hodnotách niektorých údajov. Graf je založený na kvartiloch, alebo percentiloch analyzovaných údajov. Kvartily (percentily) zobrazujú a predstavujú pozíciu v údajoch, ktorá je väčšia ako daný podiel hodnôt údajov. Bežne uvádzané percentilové hodnoty sú: 25. percentil (spodný okraj obdĺžnika), nazývaný prvý kvartil, 50. percentil, nazývaný medián (stredová čiara) a 75. percentil, nazývaný tretí kvartil (horný okraj obdĺžnika). Stredová značka predstavuje aritmetický priemer. Body mimo grafu predstavujú extrémne hodnoty.

Najčastejšie sú v stĺpcových grafoch zobrazované diskrétne, alebo kategorizované premenné. V tomto príklade (Tabuľka 1.2) máme zobrazené početnosti osôb v percentách podľa stanovených vekových skupín (graf 1) a početnosti dojníc pdľa laktácií (graf 2).

Tab 2.2 Grafické zobrazenia (zdroj: projekt KEGA, Candrák, 2021)

3. Výpočet vybratých štatistických charakteristík (sumárna štatistika).

Výpočet základných resp. vybratých štatistických charakteristík predstavuje v skutočnosti výpočet mier centrálnej tendencie údajov, ktoré sa týkajú lokalizácie stredu distribúcie hodnôt a výpočet mier variability.

4. Interpretácia a prezentácia výsledkov sumárnej štatistiky.

Najčastejšie používanými mieramy centrálnej tendencies sú: aritmetický priemer, modus a median. Aritmetický priemer možno vypočítať len na spojitých údajoch.

Pre medián musíme zoradiť hodnoty od najnižšej po najvyššiu a vybrať strednú hodnotu. Ak existuje párny počet pozorovaní, potom použijeme priemer dvoch stredných hodnôt. Medián môžeme vypočítať na spojitých údajoch a tiež aj na diskrétnych údajoch, ak existuje nejaké prirodzené zoradenie ich hodnôt.

Modus je najbežnejšou (najčastejšie sa opakujúcou) hodnotou premennej vo výberovom súbore. Modus je možné získať pre spojité aj pre diskrétne údaje. Modus nemusí mať vždy riešenie (žiadna konkrétna hodnota sa nevyskytuje najviac).

Najpoužívanejšími mieramy variability sú: variačné rozpätie, kvartilové rozpätie (3. kvartil mínus 1. kvartil), rozptyl, smerodajná odchyľka a variačný koeficient. Variačné rozpätie je najjednoduchšie vypočítať a je to najväčšia hodnota mínus najmenšia. Táto miera variability ale závisí iba od dvoch extrémnych hodnôt a v praxi nemá až takú vypovedaciu silu. Kvartilové rozpätie je v skutočnosti rozpätie stredných 50 % údajov, a je menej citlivé na extrémne hodnoty údajov.

Rozptyl je v skutočnosti priemerný štvorec rozdielu medzi každou hodnotou premennej a jej priemerom. Je to najvýznamnejšia miera variability, ale pretože to je mocninový výraz, rozptyl je ťažké interpretovať. Smerodajná odchýlka je druhá odmocnina rozptylu, čo znamená, že je pre nás oveľa jednoduchšie interpretovateľná a preto je najpoužívanejšou mierou variability.

Smerodajná odchýlka závisí od mierky, na ktorej sa merajú údaje, takže štandardná odchýlka hmotnosti nameraná v kilogramoch sa bude líšiť od štandardnej odchýlky hmotnosti nameranej v gramoch. Smerodajná odchýlka sa nedá preto použiť pri porovnávaní variability znakov roznych mierok. Ak chceme porovnať variabilitu premenných v rôznych mierkach merania, používame variačný koeficient.

5. Základná distribučná analýza (analýza rozdelenia početnosti).

Tvar distribúcie (tvar distribučnej krivky) je dôležitý na určenie, či miery centrálnej tendencie a miery variability, ktoré sme použili sú vhodne zvolené. Hodnotíme skreslenosť, alebo neskreslenosť rozdelenia početnosti analyzovaných údajov. Jedná sa o posúdenie toho, či rozdelenie početnosti je symetrické, alebo asymetrické. V oblasti biologického výskumu najčastejšie posudzujeme, či rozdelenie početnosti má normálneho rozdelenia (Gausova krivka normálneho rozdelenia).

6. Interpretácia a prezentácia základnej distribučnej analýzy (normálne rozdelenie).

Normálne rozdelenie početnosti je najviac používaným rozdelením početnosti využívaným v štatistických analýzach v rôznych oblastiach praktickej a výskumnej činnosti biologického aj nebiologického charakteru. Normálne rozdelenie je kompletne popísané priemerom a smerodajnou

odchýlkou. Typická krivka normálneho rozdelenia má súmerný zvoncový tvar. Jedným z dôležitých predpokladov väčšiny používaných štatistických metód je predpoklad zachovania normality údajov.

Obr. 1.3 Normalizované Gaussove krivky normálneho rozdelenia zdroj: https://en.wikipedia.org/wiki/Gaussian_function

Ak analyzované údaje majú normálne rozdelenie, potom približne platí, že 68 % údajov patrí do rozpätia jednej smerodajnej odchýlky od priemeru, 95 % údajov patrí do rozpätia dvoch smerodajných odchýliek od priemeru a 99 % údajov patrí do rozpätia troch smerodajných odchýliel od priemeru. Uvedené pravdepodobnosti nám umožňujú urobiť závery o populácii z vybratej vzorky údajov.

Normálne rozdelenie je symetrické podľa rovnakého priemeru a mediánu. Iné rozdelenia ale môžu vykazovať rôzne tvary, ktoré možno merať šikmosťou.

Obr. 1.4 Tvary rozdelenia početnosti Obr. 1.4 Tvary rozdelenia početnosti (zdroj: Durkhure and Lodwal, 2014)

Pozitívna symetria (ľavostranná) nastáva vtedy, keď je priemer je menší ako medián, naopak negatívna symetria (pravostranná) nastane ak je priemer väčší ako medián.

Vzorové údaje 1.1 (zdroj: Databáza údajov projektu KEGA)

Vzorové údaje 1.1 pre výpočet a interpretáciu výsledkov sumárnej štatistiky tvoria základné ukazovatele mliekovej úžitkosti vybratej skupiny kráv slovenského strakatého plemena v rámci jedného poľnohospodárskeho podniku v Slovenskej republike. Ukazovatele mliekovej úžitkovosti sú zaznamenané na úrovni normovaných laktácií, Sledované boli prvé tri normované laktácie.

Súbor údajov obsahuje nasledovné premenné:

CISLO	číslo zvieraťa
PL	poradie laktácie
OTEC	línia-register otca zvieraťa
PLEM	plemenný typ
KODV	kód vyradenia zvieraťa
ROK	rok otelenia
LDNI	laktačné dni
MLIEKO	produkcia mlieka (kg)
тик	produkcia tuku (kg)
ТИКР	obsah tuku (%)
BIELK	produkcia bielkovín (kg)
BIELKP	obsah bielkovín (%)
LAKT	produkcia laktózy (kg)
LAKTP	obsah laktózy (%)

Vzor súboru údajov (10 záznamov)

CISLO	PL	OTEC	PLEM	KODV	ROK	LDNI	MLIEKO	TUK	TUKP	BIELK	BIELKP	LAKT	LAKTP
000003950	02	KF081	S0	54	2000	305	4393	152	3.46	140	3.19	210	4.78
000005026	02	TB001	S2	00	2003	305	4000	119	2.98	126	3.15	194	4.85
000005856	02	HX032	S0	54	2000	305	4972	239	4.81	160	3.22	222	4.47
000005866	03	DSO001	S0	00	2003	305	4454	232	5.21	154	3.46	210	4.71
000008866	02	RBB001	S0	00	2003	305	4793	199	4.15	154	3.21	226	4.72
000009950	03	KF081	SC	54	2003	305	4147	161	3.88	138	3.33	194	4.68
000013950	02	NEZ000	S2	54	2000	269	4368	137	3.14	139	3.18	213	4.88
000016950	03	STA002	SC	00	2001	305	4408	139	3.15	135	3.06	201	4.56
000027866	01	RBB001	S2	00	2002	305	4445	218	4.90	132	2.97	212	4.77

Praktické použitie programu SAS (SAS Enterprise Guide)

Úlohy (Tasks): Describe - Summary Statistics

Príklad 1.1 (SAS)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľov mliekovej úžitkovosti kráv slovenského strakatého plemena. Určite, ktorý ukazovateľ má najväčšiu a najmenšiu variabilitu v hodnotenom súbore. Pre všetky hodnotené ukazovatele zostavte a interpretujte grafy vo forme histogramov a krabicových grafov. Zistite či hodnota obsahu tuku 4,00 % a hodnota obsahu bielkovín 3,30 % sa nachádza v rozpätí konfidenčných intervalov so spoľahlivosťou 95 %.

ata atistics	Data		Data Statistics > Basic		
Basic Percentiles Additional ots esults tles	Data source: Local WORK MLIEKO Task filter: None	Edit	Basic Basic statistics Additional ✓ Mean Plots ✓ Standard deviation ritles Standard gror	Maximum decimal	
operties	Variables to assign: Name © CISLO © CISLO © PL © OTLCC © PLEM © FLEM © KODV © ROK © LDNI © ULNI © TUKP © LAKTP © Classification variables © CISLCA © MLEKO © MLEKO © CISLCA © MLEKO © CISLCA © MLEKO © CISLCA © CISLCA © MLEKO © CISLCA © CISLCA © MLEKO © CISLCA © CISLCA © MLEKO © CISLCA © CISLCA		Properties Variance Vitiginum Magde Range Sum Sum of weights Number of missing value	Divisor for standard deviation and variance: Degrees of freedom v	
		>	<		>
Preview code	Run - Save Ca	ancel Help	Preview code	Run - Save Cancel	Held

Tab 3.2a Nastavenie analýzy - príklad 1.1 (zdroj: projekt KEGA, Candrák, 2021)

Po správnom nastavení analyzovaných ukazovateľov môžeme nastaviť jednotlivé základné popisné charakteristiky, percentily a doplnkové popisné charakteristiky.

Veľmi užitočnou možnosťou je nastavenie optimálneho počtu desatinných miest pre vypočítavané stredné hodnoty, jednotlivé miery variability a vybraté doplnkové koeficienty.

Data Statistics Basic	Statistics > Percentiles		Data Statistics Basic	Statistics > Additional			
Basic Percentiles P Additional [Plots] Plots] Prosenties [Properties] C C C C C C C C C C C C C	Percentile statistics	^	Percentiles Additional Plots Results Titles Properties	Additional statistics Confidence limits of the mean t statistics and Prob > It Coefficient of variation Corrected sum of squares Uncorrected sum of squares		Confidence level for confidence limits of	
	Quantile method: Order statistics v	× ×		<			

Tab 4.2b Rozšírené nastavenie analýzy - príklad 1.1 (zdroj: projekt KEGA, Candrák, 2021)

Samostatne je ešte potrebné nastaviť zobrazenie požadovaných grafických výstupov (histogram a krabicový graf).

Tab 5.2c Rozšírené nastavenie analýzy - príklad 1.1 (zdroj: projekt KEGA, Candrák, 2021)

Data Statistics Basic Percentiles Additional Plots Results Titles Properties	Plots							
	Generated piols ✓ ∐istogram (Histogram plot options						
	Note: Plots are created for only the n-way combinations of the classification variables, if any.							
	<	>						
	<	>						

Výsledky (program SAS)

									Lower 95%	Upper 95%	
Variable	Mean	Std Dev	Minimum	Maximum	N	Lower Quartile	Median	Upper Quartile	CL for Mean	CL for Mean	Coeff of Variation
MLIEKO	5099.89	844.00	4000.00	7941.00	147	4431.00	4943.00	5610.00	4962.31	5237.47	16.55
TUK	212.07	47.03	119.00	360.00	147	177.00	210.00	238.00	204.40	219.73	22.18
TUKP	4.15	0.60	2.97	5.56	147	3.71	4.12	4.57	4.06	4.25	14.39
BIELK	170.25	30.12	121.00	257.00	147	146.00	168.00	189.00	165.34	175.16	17.69
BIELKP	3.34	0.22	2.80	4.02	147	3.19	3.31	3.49	3.30	3.38	6.65
LAKT	233.61	44.53	124.00	371.00	147	201.00	224.00	262.00	226.35	240.87	19.06
LAKTP	4.58	0.40	2.21	5.12	147	4.54	4.66	4.79	4.52	4.65	8.70

Tab 6.3 Základné štatistické charakteristiky (zdroj: projekt KEGA, Candrák, 2021)

V tabuľke 1.3 máme zobrazené všetky požadované a nastavené číselné popisné charakteristiky analyzovaného súboru mliekovej úžitkovosti kráv. Najväčšiu variabilitu (hodnota variačného koeficienta 22,12 %) sme zistili pri ukazovateli produkcia tuku v kilogramoch a naopak najnižšiu variabilitu (hodnota variačného koeficienta iba 6,65 %) sme zistili pri obsahu bielkovín.

Nepotvrdil sa predpoklad, že hodnota obsahu tuku 4,00 % sa nachádza v hraniciach konfidenčného intervalu so spoľahlivosťou 95 %. Priemerná hodnota obsahu tuku (4,15 %) sa totiž nachádza vo vyšších hraniciach od 4,06 % do 4,25 %. Uvedené zistenie je ale z hľadiska mliekovej úžitkovosti kráv pozitívne. Znamená priemerné zvýšenie obsahu tuku v kravskom mlieku oproti predpokladanému obsahu tuku, čo môže mať pozitívny efekt pre konkrétneho chovateľa, aj pre samotného spracovateľa mlieka pri výrobe mliečnych výrobkov. V prípade obsahu bielkovín sa hodnota 3,30 % nachádza presne na spodnej hranice konfidenčného intervalu. Potvrdilo sa tvrdenie, že vypočítaná priemerná hodnota patrí do tohto intervalu. Grafické zobrazenia výsledkov jednotlivých ukazovateľov uvádzame v tabuľkách 1.4. - 1.10.

Tab 7.4 Mlieko (zdroj: projekt KEGA, Candrák, 2021)

Sumárna štatistika

Rozdelenie početnosti ukazovateľa mlieko v kilogramoch ukazuje, že je vychýlené (zošikmené) do pravej strany (negatívna asymetria). Priemer dosahuje vyššiu hodnotu ako medián, čo je zaznamenané aj v krabicovom grafe. Podobne nie sú súmerné ani hranice, ktoré určujú vertikálne ohraničené úsečky (whiskers). Potvrdený je aj výskyt niekoľkých extrémnych hodnôt. Uvedené rozdelenie nemôžeme preto považovať za úplne normálne rozdelenie početnosti.

Tab 8.5 Tuk (zdroj: projekt KEGA, Candrák, 2021)

Rozdelenie početnosti ukazovateľa tuk v kilogramoch môžeme považovať za približne normálne (priemer a medián sú prakticky rovnaké). Drobná odchýlka je v spojitosti so zobrazovanými kvartilmi a niektorými extrémnymi hodnotami.

Tab 9.6 Tuk % (zdroj: projekt KEGA, Candrák, 2021)

Rozdelenie početnosti ukazovateľa % tuk sa podobá normálnemu rozdeleniu. Uvedené rozdelenie môžeme preto považovať za normálne rozdelenie početnosti. Priemer a medián sú veľmi podobné. Krabicový graf to potvrdzuje tiež, neobsahuje žiadne extrémne hodnoty.

Tab 10.7 Bielkoviny (zdroj: projekt KEGA, Candrák, 2021)

Tab 11.8 Bielkoviny % (zdroj: projekt KEGA, Candrák, 2021)

Rozdelenie početnosti ukazovateľa bielkoviny v kilogramoch môžeme tiež považovať za približne normálne (existuje ale mierna negatívna asymetria). Drobná odchýlka je v spojitosti so zobrazovanými kvartilmi a niektorými extrémnymi hodnotami.

Rozdelenie početnosti ukazovateľa % bielkovín sa znovu podobá normálnemu rozdeleniu. Uvedené rozdelenie môžeme preto považovať za normálne rozdelenie početnosti. Priemer a medián sú mierne rozdielne. Krabicový graf to obsahuje jednu extrémnu hodnotu.

Tab 12.9 Laktóza (zdroj: projekt KEGA, Candrák, 2021)

Rozdelenie početnosti ukazovateľa laktóza v kilogramoch považujeme podobne ako predchádzajúce vlastnosti za približne normálne (existuje mierna negatívna asymetria). Drobná odchýlka je v rozdieloch hodnoty priemeru a mediánu a v existencii niektorých extrémnych hodnôt.

Tab 13.10 Laktóza % (zdroj: projekt KEGA, Candrák, 2021)

Rozdelenie početnosti ukazovateľa % laktózy ukazuje, že je vychýlené (zošikmené) do ľavej strany (pozitíbna asymetria). Priemer dosahuje nižššiu hodnotu ako medián, čo je potvrdené aj v krabicovom grafe. Hoci hranice, ktoré určujú vertikálne ohraničené úsečky (whiskers) sú súmerné, existuje pomerne veľký počet minimálnych extrémnych hodnôt. Uvedené rozdelenie preto nemôžeme považovať za úplne normálne rozdelenie početnosti.

Príklad 1.2 (SAS)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľa produkcia mlieka v kilogramoch podľa poradia laktácie. Zistite na ktorej laktácii má produkcia mlieka najväčšiu a najmenšiu variabilitu. Pre hodnotený ukazovateľ zostavte a interpretujte grafy vo forme histogramu a vo forme krabicového grafu podľa jednotlivých laktácií. Riešenie zadanej úlohy podľa laktácií má nasledovné nastavenie (Tabuľka 1.11, ostatné nastavenia sú rovnaké ako v príklade 1.1):

Data Statistics	Data			Data Statistics	Statistics > Basic			
Basic Percentiles Additional Plots Results Titles Properties	tics sic croenties ditional ts Variables to gssign: Task roles: Anapys variables Anapys variables Anapys variables MILEKO Anapys variables MILEKO PL Relative weight (Limit: 1) Relative weight (Limit: 1) Relativ	Percontiles Additional Plots Results Titles Properties	Basic statistics Y Mean Standard deviation Standard geror Migimum Mgde Range Sum Sum V Number of observations Number of missing values	Maximum decimal 2 Divisor for standar and variance: Degrees of freed	Maximum decimal 2 ✓ Divisor for standard deviation and variance: Degrees of freedom ✓			
	<		>		<			>
	The variables that you assign to used to divide the input data int	o this role are character or discrete nume to categories or subgroups. The statistics	ric variables that are s will be calculated on all	û				

Tab 14.11 Nastavenia analýzy - príklad 1.2 (zdroj: projekt KEGA, Candrák, 2021)

Výsledky (program SAS)

Tab 15.12 Základné štatistické charakteristiky (zdroj: projekt KEGA, Candrák, 2021)

	Analysis Variable : MLIEKO														
										Lower 95%	Upper 95%				
PL	N Obs	Mean	Std Dev	Minimum	Maximum	Ν	Lower Quartile	Median	Upper Quartile	CL for Mean	CL for Mean	Coeff of Variation			
01	50	5052.80	777.48	4042.00	6891.00	50	4463.00	4868.50	5392.00	4831.84	5273.76	15.39			
02	50	5022.98	897.32	4000.00	7661.00	50	4340.00	4788.50	5536.00	4767.97	5277.99	17.86			
03	47	5231.81	855.98	4055.00	7941.00	47	4510.00	5180.00	5724.00	4980.48	5483.13	16.36			

V tabuľke 1.12 sú uvedené základné číselné štatistické charakteristiky produkcie mlieka podľa poradia laktácie. Priemerná hodnota produkcie mlieka na prvej a druhej laktácii je približne rovnaká. Najväčšiu variabilitu dosiahla produkcia mlieka na druhej laktácii (variačný koeficient má hodnotu 17,86 %), najnižšiu variabilitu dosiahla produkcia mlieka na prvej laktácii (variačný koeficient má hodnotu 15,39 %).

Všeobecne ale môžeme tvrdiť že variabilita produkcie mlieka kráv je približne rovnaká. Grafické zobrazenia sumárnych výsledkov podľa poradia laktácie uvádza v tabuľke 1.13.

Tab 16.13 Nastavenia analýzy - príklad 1.2 (zdroj: projekt KEGA, Candrák, 2021)

Prvé dve laktácie majú rozdelenie početnosti kilogramov mlieka veľmi podobne zošikmené do pravej strany (negatívna asymetria). Ich priemery dosahuje vyššiu hodnotu ako medián, čo je znázornené aj v krabicovom grafe. Podobne nie sú súmerné ani hranice, ktoré určujú vertikálne ohraničené úsečky (whiskers). Potvrdený je aj výskyt extrémnych hodnôt. Uvedené rozdelenia nemôžeme preto považovať za úplne normálne rozdelenia početnosti. Rozdelenie početnosti produkcie mlieka na tretej laktácie je ale rozdielne. Blíži sa skôr k normálnemu rozdeleniu početnosti. Hodnota priemeru je veľmi podobná hodnote mediánu (rozdiel je iba približne 51 kilogramov). Rozdiel priemerných hodnôt a mediánov v prípade prvých dvoch laktácií je výrazne väčší.

Praktické použitie programu EXCEL (Microsoft 365)

V rámci doplnkov programu Microsoft Excel je možné využiť doplnok analytických nástrojov **Data Analysis,** ktorý má jednoduchú možnosť výpočtu základných štatistických charakteristík (sumárnu štatistiku) v položke Descriptive Statistics (popisná štatistika).

Tab 17.14 Použitie analýzy údajov v programe Excel

Data Analysis		? ×
<u>A</u> nalysis Tools		OK
Anova: Two-Factor With Replication	^	ÜK
Anova: Two-Factor Without Replication		Cancel
Correlation		
Covariance		
Descriptive Statistics		Pomocník
Exponential Smoothing		
F-Test Two-Sample for Variances		
Fourier Analysis		
Histogram		
Moving Average	\checkmark	

Príklad 1.1 (Excel)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľov mliekovej úžitkovosti kráv slovenského strakatého plemena. Určite, ktorý ukazovateľ má najväčšiu a najmenšiu variabilitu v hodnotenom súbore. Zistite či hodnota obsahu tuku 4,00 % a hodnota obsahu bielkovín 3,30 % sa nachádza v rozpätí konfidenčných intervalov so spoľahlivosťou 95 %.

Detailné nastavenie vstupných (analyzovaných) údajov a odporúčané nastavenie ostatných parametrov výpočtu (tabuľka 1.15):

Descriptive Statistics		? ×
Input Input Range:	\$H\$1:\$N\$148	ОК
Grouped By:	<u>C</u> olumns	Cancel
Labels in first row		Pomocnik
Output options		
Output Range:	<u>+</u>	
• New Worksheet <u>P</u> ly:		
O New Workbook		
✓ <u>S</u> ummary statistics		
✓ Confidence Level for Mean:	95 %	
Kth L <u>a</u> rgest:	1	
Kth S <u>m</u> allest:	1	

Tab 18.15 Detainé nastavenie analýzy údajov v programe Excel

Uvedené nastavenie predpokladá, že všetky hodnotené ukazovatele sú umiestnené v stĺpcoch vedľa seba a majú v prvom riadku svoje označenie (popisky).

Výsledky (Excel)

V tabuľke 16 uvádzame základné štatistické charakteristiky hodnotených ukazovateľov mliekovej úžitkovosti.

MLIEKO		TUK		TUKP		BIELK		BIELKP	
Mean	5099.891	Mean	212.068	Mean	4.154422	Mean	170.2517	Mean	3.338844
Standard Error	69.61228	Standard Error	3.879146	Standard Error	0.049297	Standard Error	2.484222	Standard Error	0.018319
Median	4943	Median	210	Median	4.12	Median	168	Median	3.31
Mode	5129	Mode	215	Mode	4.28	Mode	180	Mode	3.43
Standard Deviation	844.0041	Standard Deviation	47.03215	Standard Deviation	0.597691	Standard Deviation	30.11959	Standard Deviation	0.222105
Sample Variance	712342.9	Sample Variance	2212.023	Sample Variance	0.357234	Sample Variance	907.1896	Sample Variance	0.049331
Kurtosis	0.500828	Kurtosis	0.338424	Kurtosis	-0.45604	Kurtosis	0.229075	Kurtosis	0.199029
Skewness	0.939199	Skewness	0.626027	Skewness	0.350831	Skewness	0.783495	Skewness	0.405111
Range	3941	Range	241	Range	2.59	Range	136	Range	1.22
Minimum	4000	Minimum	119	Minimum	2.97	Minimum	121	Minimum	2.8
Maximum	7941	Maximum	360	Maximum	5.56	Maximum	257	Maximum	4.02
Sum	749684	Sum	31174	Sum	610.7	Sum	25027	Sum	490.81
Count	147								
Confidence Level(95.0%)	137.5779	Confidence Level(95.0%)	7.666533	Confidence Level(95.0%)	0.097427	Confidence Level(95.0%)	4.909681	Confidence Level(95.0%)	0.036205

Tab 19.16 Základné štatistické charakteristiky (zdroj: projekt KEGA, Candrák, 2021)

Výsledky sú identické ako v prípade použitia programu SAS (SAS Enterprise Quide). Rozdiel je iba v odlišnom vyjadrení konfidenčného intervalu, ktorý je uvedený vo forme polovice jeho rozsahu intervalu a nie ako spodná a horná hranica intervalu. Uvedenú hodnotu musíme odpočítať a pripočítať k aritmetickému priemeru (+- Mean).

Grafické zobrazenie rozdelenia početnosti ukazovateľa mlieko v kilogramoch, tak ako bolo vytvorené v prostredí programu Excel uvádzame v obrázku 1.5.

Obr. 1.5 Rozdelenia početnosti - mlieko

Grafické zobrazenie bolo tiež vytvorené v rámci analýzy údajov: Data Analysis - Histogram. V grafe sú okrem rozdelenia početnosti zobrazené aj chybové úsečky (štandardná chyba) v rámci jednotlivých skúpín rozdelenia početnosti. Program Excel umožňuje v rámci zostavovania grafov použiť a zostaviť aj iné formy zobrazenia výsledkov popisnej štatistiky a rozdelenia početnosti údajov.

Príklad 1.2 (Excel)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľa produkcia mlieka v kilogramoch podľa poradia laktácie. Zistite na ktorej laktácii má produkcia mlieka najväčšiu a najmenšiu variabilitu.

Úloha predpokladá usporiadanie všetkých záznamov podľa poradia laktácie následne vykonanie troch samostatných analýz popisnej štatistiky v module Data Analysis.

Výsledky (Excel)

V tabuľkách 1.17 - 1.19 uvádzame vypočítane základné štatistické charakteristiky hodnotených ukazovateľov mliekovej úžitkovosti kráv podľa laktácií

MLIEKO		TUK		Τυκρ		BIELK		BIELKP	
Mean	5052.8	Mean	209.66	Mean	4.1604	Mean	171.18	Mean	3.3894
Standard Error	109.953	Standard Error	5.52535	Standard Error	0.08421	Standard Error	3.92363	Standard Error	0.03011
Median	4868.5	Median	215	Median	4.225	Median	171	Median	3.395
Mode	4898	Mode	215	Mode	4.28	Mode	147	Mode	3.43
Standard Deviation	777.483	Standard Deviation	39.0701	Standard Deviation	0.59545	Standard Deviation	27.7442	Standard Deviation	0.21289
Sample Variance	604480	Sample Variance	1526.47	Sample Variance	0.35456	Sample Variance	769.742	Sample Variance	0.04532
Kurtosis	0.00768	Kurtosis	-0.3333	Kurtosis	-0.5591	Kurtosis	0.08851	Kurtosis	0.17989
Skewness	0.96576	Skewness	-0.1593	Skewness	0.24463	Skewness	0.66987	Skewness	0.5288
Range	2849	Range	176	Range	2.57	Range	118	Range	0.97
Minimum	4042	Minimum	120	Minimum	2.97	Minimum	132	Minimum	2.97
Maximum	6891	Maximum	296	Maximum	5.54	Maximum	250	Maximum	3.94
Sum	252640	Sum	10483	Sum	208.02	Sum	8559	Sum	169.47
Count	50	Count	50	Count	50	Count	50	Count	50
Confidence Level(95.	220.958	Confidence Level(95	11.1036	Confidence Level(95.	0.16923	Confidence Level(95	7.88482	Confidence Level(95	0.0605

Tab 20.17 Základné štatistické charakteristiky - 1. laktácia (zdroj: projekt KEGA, Candrák, 2021)

Tab 21.18 Základné štatistické charakteristiky - 2. laktácia (zdroj: projekt KEGA, Candrák, 2021)

MLIEKO		TUK		TUKP		BIELK		BIELKP	
Mean	5022.98	Mean	212	Mean	4.1958	Mean	165.28	Mean	3.2926
Standard Error	126.9	Standard Error	8.12439	Standard Error	0.09459	Standard Error	4.35356	Standard Error	0.02992
Median	4788.5	Median	195.5	Median	4.065	Median	153.5	Median	3.265
Mode	#N/A	Mode	239	Mode	5.56	Mode	132	Mode	3.18
Standard Deviation	897.318	Standard Deviation	57.4481	Standard Deviation	0.66884	Standard Deviation	30.7843	Standard Deviation	0.21154
Sample Variance	805179	Sample Variance	3300.29	Sample Variance	0.44734	Sample Variance	947.675	Sample Variance	0.04475
Kurtosis	0.31039	Kurtosis	0.19901	Kurtosis	-0.5669	Kurtosis	0.00252	Kurtosis	1.94619
Skewness	0.96523	Skewness	0.97603	Skewness	0.42622	Skewness	0.89469	Skewness	0.96321
Range	3661	Range	241	Range	2.58	Range	121	Range	1.13
Minimum	4000	Minimum	119	Minimum	2.98	Minimum	124	Minimum	2.89
Maximum	7661	Maximum	360	Maximum	5.56	Maximum	245	Maximum	4.02
Sum	251149	Sum	10600	Sum	209.79	Sum	8264	Sum	164.63
Count	50	Count	50	Count	50	Count	50	Count	50
Confidence Level(95.	255.015	Confidence Level(95.	16.3266	Confidence Level(95.	0.19008	Confidence Level(95.	8.74881	Confidence Level(95	0.06012

Tab 22.19 Základné štatistické charakteristiky - 3. laktácia (zdroj: projekt KEGA, Candrák, 2021)

MLIEKO		TUK		TUKP		BIELK		BIELKP	
Mean	5231.81	Mean	214.702	Mean	4.10404	Mean	174.553	Mean	3.33426
Standard Error	124.857	Standard Error	6.30066	Standard Error	0.07651	Standard Error	4.62005	Standard Error	0.03436
Median	5180	Median	216	Median	4.12	Median	173	Median	3.32
Mode	#N/A	Mode	139	Mode	4.12	Mode	173	Mode	3.32
Standard Deviation	855.979	Standard Deviation	43.1952	Standard Deviation	0.52453	Standard Deviation	31.6735	Standard Deviation	0.23559
Sample Variance	732700	Sample Variance	1865.82	Sample Variance	0.27513	Sample Variance	1003.21	Sample Variance	0.0555
Kurtosis	1.34948	Kurtosis	-0.1989	Kurtosis	-0.5052	Kurtosis	0.73989	Kurtosis	-0.5288
Skewness	0.97869	Skewness	0.2864	Skewness	0.19544	Skewness	0.84087	Skewness	-0.0498
Range	3886	Range	171	Range	2.15	Range	136	Range	1.03
Minimum	4055	Minimum	136	Minimum	3.15	Minimum	121	Minimum	2.8
Maximum	7941	Maximum	307	Maximum	5.3	Maximum	257	Maximum	3.83
Sum	245895	Sum	10091	Sum	192.89	Sum	8204	Sum	156.71
Count	47								
Confidence Level(95	251 325	Confidence Level(95	12 6826	Confidence Level(95	0 15401	Confidence Level(95	9 29968	Confidence Level(95	0.06917

Výsledky sú samozrejme identické ako to bolo v prípade použitia programu SAS.

Výpočet základných štatistických charakteristík je možné uskutočniť v programe Excel aj pomocou vkladania jendotlivých štatistických funkcií. V tomto príklade by to bolo značne zložitejšie a časovo náročnejšie.

Aktuálny prehľad základných štatistických funkcií programu Excel

https://support.microsoft.com/en-us/office/statistical-functions-reference-624dac86-a375-4435bc25-76d659719ffd

Analýza údajov v programe Excel:

https://support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-dataanalysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6

Praktické použitie programu R (R Studio)

Príklad 1.1 (program R)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľov mliekovej úžitkovosti kráv slovenského strakatého plemena. Určite, ktorý ukazovateľ má najväčšiu a najmenšiu variabilitu v hodnotenom súbore. Pre všetky hodnotené ukazovatele zostavte a interpretujte grafy vo forme histogramov a krabicových grafov. Zistite či hodnota obsahu tuku 4,00 % a hodnota obsahu bielkovín 3,30 % sa nachádza v rozpätí konfidenčných intervalov so spoľahlivosťou 95 %.

Zadanie analýzy (program R)

Import a zobrazenie údajov (databáza projektu KEGA)

file_path <- "http://e-biostat.uniag.sk/wp-content/uploads/2022/01/Mlieko.txt"

Mlieko_R <- read.delim(file_path)</pre>

View(Mlieko_R)

Inštalácia balíka summarytools (umožňuje veľkú rozmanitosť nastavení výpočtu)

install.packages("summarytools")

library(summarytools)

Výpočet základných štatistických charakteristík

descr(Mlieko_R, digits=4)

descr(Mlieko_R,
 stats = "common") # most common descriptive statistics

Rozšírený výpočet základných štatistických charakteristík

dfSummary(Mlieko_R, transpose = TRUE)

Výpočet konfidenčných intervalov

install.packages("Rmisc") library(Rmisc) CI(Mlieko_R\$TUKP, ci=0.95) CI(Mlieko_R\$BIELKP, ci=0.95)

Zostavenie histogramov a krabicových grafov

hist(Mlieko_R\$MLIEKO)

boxplot(Mlieko_R\$MLIEKO ~ Mlieko_R\$ROK)

boxplot(MLIEKO~PLEM,data=Mlieko_R, main="Produkcia mlieka",

xlab="Plemenný typ", ylab="Mlieko kg")

Výpočet základných štatistických charakteristík podľa triediaceho znaku

stby(data = Mlieko_R,

INDICES = Mlieko_R\$PL, # podľa poradia laktácie

FUN = descr, # descriptive statistics

stats = "common") # most common descr. stats

Výsledky analýzy (program R)

Výpočet základných štatistických charakteristik							
N: 147							
	BIELK	BIELKP	MLIEKO	TUK	TUKP		
Mean	170.2517	3.3388	5099.8912	212.0680	4.1544		
Std.Dev	30.1196	0.2221	844.0041	47.0321	0.5977		
Min	121.0000	2.8000	4000.0000	119.0000	2.9700		
Q1	146.0000	3.1900	4431.0000	177.0000	3.7100		
Median	168.0000	3.3100	4943.0000	210.0000	4.1200		
Q3	189.0000	3.4900	5610.0000	238.0000	4.5700		
Max	257.0000	4.0200	7941.0000	360.0000	5.5600		
MAD	31.1346	0.2224	839.1516	47.4432	0.6375		
IQR	42.0000	0.2950	1153.0000	60.5000	0.8550		
CV	0.1769	0.0665	0.1655	0.2218	0.1439		
Skewness	0.7676	0.3969	0.9201	0.6133	0.3437		
SE.Skewness	0.2000	0.2000	0.2000	0.2000	0.2000		
Kurtosis	0.1377	0.1090	0.3967	0.2419	-0.5154		

Hrubo sú označené ukazovatele s najmenšou (BIELKP) a najväčšou variabilitou (TUK).

Výpočet konfidenčných intervalov

TUKP

upper mean lower

4.251849 4.154422 4.056994

Hodnota 4.0 % ukazovateľa TUKP sa nenachádza v konfidenčnom intervale so spoľahlivosťou 95 %. BIELKP

mean lower upper

3.375048 3.338844 3.302639

Hodnota 3.3 % ukazovateľa BIELKP sa nenachádza v konfidenčnom intervale so spoľahlivosťou 95 %.

Príklad 1.2 (program R)

Vypočítajte a popíšte základné štatistické charakteristiky ukazovateľa produkcia mlieka v kilogramoch podľa poradia laktácie. Zistite na ktorej laktácii má produkcia mlieka najväčšiu a najmenšiu variabilitu.

Zadanie analýzy (program R)

Import a zobrazenie údajov (databáza projektu KEGA)
file_path <- "http://e-biostat.uniag.sk/wp-content/uploads/2022/01/Mlieko.txt"
Mlieko_R <- read.delim(file_path)
View(Mlieko_R)
Inštalácia balíka summarytools (umožňuje veľkú rozmanitosť nastavení výpočtu)
install.packages("summarytools")
library(summarytools)
Výpočet základných štatistických charakteristík podľa triediaceho znaku
stby(data = Mlieko_R, INDICES = Mlieko_R\$PL, # podľa poradia laktácie FUN = descr, # descriptive statistics stats = "common") # most common descr. stats
Inštalácia balíka psych install.packages("psych")
library(psych)
Výpočet základných štatistických charakteristík podľa triediaceho znaku
describeBy(Mlieko_R, Mlieko_R \$PL) # grouping variable

Výsledky analýzy (program R)

```
      Výpočet základných štatistických charakteristík podľa poradia laktácie

      group: 01

      n mean sd median trimmed mad min max range skew kurtosis se

      50 5052.8 777.48 4868.5 4960.73 617.5 4042 6891 2849 0.91 -0.23 109.95

      group: 02

      n mean sd median trimmed mad min max range skew kurtosis se

      50 5022.98 897.32 4788.5 4915.92 845.82 4000 7661 3661 0.91 0.04 126.9

      group: 03

      n mean sd median trimmed mad min max range skew kurtosis se

      47 5231.81 855.98 5180 5149.46 880.66 4055 7941 3886 0.92 0.91 124.86
```

Výsledky analýzy (program R)

Výpočet základných štatistických charakteristík podľa poradia laktácie						
MLIEKO	by PL					
		1	2	3		
	Mean	5052.8000	5022.9800	5231.8085		
	Std.Dev	777.4833	897.3179	855.9789		
	Min	4042.0000	4000.0000	4055.0000		
	Q1	4463.0000	4340.0000	4510.0000		
	Median	4868.5000	4788.5000	5180.0000		
	Q3	5392.0000	5536.0000	5724.0000		
	Max	6891.0000	7661.0000	7941.0000		
	MAD	617.5029	845.8233	880.6644		
	IQR	925.2500	1183.5000	1159.0000		
	CV	0.1539	0.1786	0.1636		
	Skewness	0.9086	0.9081	0.9171		
:	SE.Skewness	0.3366	0.3366	0.3466		
	Kurtosis	-0.2251	0.0373	0.9131		
Hrubo sť	ú označené lak	tácie s najmenšou	ı (1) a najväčšoi	u variabilitou (2).		
	Grafické	zobrazenie (krabio	cové grafy podľa	a poradia laktácie	a plemenného typu)	
		Υ.			, ,	
ç	8			8		
N N		°	.		°	
\$MLIE				\$WILIE		
8 R 8						
Mlie				Mie Do Mie		
ç	4 I	2 3		50 S0	S1 S2 SC	
		Mlieko R\$PL			Mlieko R\$PLEM	
		_			-	

Zdroje a zoznam použitej literatúry

Durkhure, P. and Lodwal, A., 2014. "Fault Diagnosis of Ball Bearing using Time Domain Analysis and Fast Fourier Transformation". International Journal of Engineering Sciences & Research Technology, Vol. 3, pp.711-715

Zdroj 1: <u>https://documentation.sas.com/doc/en/egdoccdc/8.3/egamotasks/titlepage.htm</u> Zdroj 2a: <u>https://support.microsoft.com/en-us/office/statistical-functions-reference-624dac86-a375-</u>

4435-bc25-76d659719ffd

Zdroj 2b: <u>https://support.microsoft.com/en-us/office/use-the-analysis-toolpak-to-perform-complex-</u> data-analysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6

Zdroj 3: https://www.r-project.org/

The R Journal Vol. 13/1, June 2021 ISSN 2073-485.